Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(4)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38113112

RESUMEN

Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model, we identified alterations in tryptophan metabolism, and specifically indole, that correlated with disease. We demonstrated that both bacteria and dietary tryptophan were required for disease and that indole supplementation was sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1ß; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colonic lymphocytes to indole increased the expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a unique therapeutic pathway for RA and SpA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Microbiota , Ratones , Humanos , Animales , Interleucina-17/genética , Interleucina-17/metabolismo , Triptófano , Artritis Reumatoide/genética , Colágeno
2.
Microbiome ; 11(1): 256, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978573

RESUMEN

BACKGROUND: Intestinal epithelial cell (IEC) mitochondrial dysfunction involvement in inflammatory bowel diseases (IBD), including Crohn's disease affecting the small intestine, is emerging in recent studies. As the interface between the self and the gut microbiota, IECs serve as hubs of bidirectional cross-talk between host and luminal microbiota. However, the role of mitochondrial-microbiota interaction in the ileum is largely unexplored. Prohibitin 1 (PHB1), a chaperone protein of the inner mitochondrial membrane required for optimal electron transport chain function, is decreased during IBD. We previously demonstrated that mice deficient in PHB1 specifically in IECs (Phb1i∆IEC) exhibited mitochondrial impairment, Paneth cell defects, gut microbiota dysbiosis, and spontaneous inflammation in the ileum (ileitis). Mice deficient in PHB1 in Paneth cells (epithelial secretory cells of the small intestine; Phb1∆PC) also exhibited mitochondrial impairment, Paneth cell defects, and spontaneous ileitis. Here, we determined whether this phenotype is driven by Phb1 deficiency-associated ileal microbiota alterations or direct effects of loss of PHB1 in host IECs. RESULTS: Depletion of gut microbiota by broad-spectrum antibiotic treatment in Phb1∆PC or Phb1i∆IEC mice revealed a necessary role of microbiota to cause ileitis. Using germ-free mice colonized with ileal microbiota from Phb1-deficient mice, we show that this microbiota could not independently induce ileitis without host mitochondrial dysfunction. The luminal microbiota phenotype of Phb1i∆IEC mice included a loss of the short-chain fatty acid butyrate. Supplementation of butyrate in Phb1-deficient mice ameliorated Paneth cell abnormalities and ileitis. Phb1-deficient ileal enteroid models suggest deleterious epithelial-intrinsic responses to ileal microbiota that were protected by butyrate. CONCLUSIONS: These results suggest a mutual and essential reinforcing interplay of gut microbiota and host IEC, including Paneth cell, mitochondrial health in influencing ileitis. Restoration of butyrate is a potential therapeutic option in Crohn's disease patients harboring epithelial cell mitochondrial dysfunction. Video Abstract.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Ileítis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Ileítis/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Células de Paneth , Butiratos/metabolismo , Mitocondrias/metabolismo , Mucosa Intestinal/metabolismo
3.
Gut Microbes ; 15(2): 2267706, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37822087

RESUMEN

Microbiota-derived short-chain fatty acids, including butyrate (BA), have multiple beneficial health effects. In the colon, BA concentrations range from 10 to 20 mM and up to 95% is utilized as energy by the mucosa. BA plays a key role in epithelial-barrier regulation and anti-inflammation, and regulates cell growth and differentiation, at least in part, due to its direct influence on stabilization of the transcription factor hypoxia-inducible factor (HIF). It remains unclear whether BA is the optimal metabolite for such a response. In this study, we explored metabolite mimicry as an attractive strategy for the biological response to HIF. We discovered that 4-mercapto butyrate (MBA) stabilizes HIF more potently and has a longer biological half-life than BA in intestinal epithelial cells (IECs). We validated the MBA-mediated HIF transcriptional activity through the induction of classic HIF gene targets in IECs and enhanced epithelial barrier formation in vitro. In-vivo studies with MBA revealed systemic HIF stabilization in mice, which was more potent than its parent BA metabolite. Mechanistically, we found that MBA enhances oxygen consumption and that the sulfhydryl group is essential for HIF stabilization, but exclusively as a four-carbon SCFA. These findings reveal a combined biochemical mechanism for HIF stabilization and provide a foundation for the discovery of potent metabolite-like scaffolds.


Asunto(s)
Butiratos , Microbioma Gastrointestinal , Ratones , Animales , Butiratos/farmacología , Butiratos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Ácidos Grasos Volátiles/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
4.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873395

RESUMEN

Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model we identify alterations in tryptophan metabolism, and specifically indole, that correlate with disease. We demonstrate that both bacteria and dietary tryptophan are required for disease, and indole supplementation is sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1ß; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colon lymphocytes to indole increased expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a novel therapeutic pathway for RA and SpA.

5.
Mucosal Immunol ; 16(6): 817-825, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37716510

RESUMEN

Inflammatory diseases of the digestive tract, including inflammatory bowel disease, cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in inflammatory bowel disease patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model. In the present studies, we evaluated the role of CK loss in active inflammation using the DSS colitis model. Mice lacking expression of CK brain type/CK mitochondrial form (CKdKO) showed increased susceptibility to DSS colitis (weight loss, disease activity, permeability, colon length, and histology). In a broad cytokine profiling, CKdKO mice expressed near absent interferon gamma (IFN-γ) levels. We identified losses in IFN-γ production from CD4+ and CD8+ T cells isolated from CKdKO mice. Addback of IFN-γ during DSS treatment resulted in partial protection for CKdKO mice. Extensions of these studies identified basal stabilization of the transcription factor hypoxia-inducible factor in CKdKO splenocytes and pharmacological stabilization of hypoxia-inducible factor resulted in reduced IFN-γ production by control splenocytes. Thus, the loss of IFN-γ production by CD4+ and CD8+ T cells in CKdKO mice resulted in increased colitis susceptibility and indicates that CK is protective in active mucosal inflammation.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Creatina Quinasa/metabolismo , Linfocitos T CD8-positivos/metabolismo , Creatina/metabolismo , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Interferón gamma/metabolismo , Inflamación/metabolismo , Hipoxia/metabolismo , Sulfato de Dextran/farmacología , Colon/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Citocinas/metabolismo
6.
bioRxiv ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37333192

RESUMEN

Inflammatory diseases of the digestive tract, including inflammatory bowel disease (IBD), cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in IBD patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model. In the present studies, we evaluated the role of CK loss in active inflammation using the DSS colitis model. Mice lacking expression of CKB/CKMit (CKdKO) showed increased susceptibility to DSS colitis (weight loss, disease activity, permeability, colon length and histology). In a broad cytokine profiling, CKdKO mice expressed near absent IFN-γ levels. We identified losses in IFN-γ production from CD4 + and CD8 + T cells isolated from CKdKO mice. Addback of IFN-γ during DSS treatment resulted in partial protection for CKdKO mice. We identified basal stabilization of the transcription factor hypoxia-inducible factor (HIF) in CKdKO splenocytes and pharmacological stabilization of HIF resulted in reduced IFN-γ production by control splenocytes. Thus, the loss of IFN-γ production by CD4 + and CD8 + T cells in CKdKO mice resulted in increased colitis susceptibility and indicates that CK is protective in active mucosal inflammation.

7.
Cell Rep ; 40(13): 111409, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36170839

RESUMEN

The intestinal mucosa exists in a state of "physiologic hypoxia," where oxygen tensions are markedly lower than those in other tissues. Intestinal epithelial cells (IECs) have evolved to maintain homeostasis in this austere environment through oxygen-sensitive transcription factors, including hypoxia-inducible factors (HIFs). Using an unbiased chromatin immunoprecipitation (ChIP) screen for HIF-1 targets, we identify autophagy as a major pathway induced by hypoxia in IECs. One important function of autophagy is to defend against intracellular pathogens, termed "xenophagy." Analysis reveals that HIF is a central regulator of autophagy and that in vitro infection of IECs with Salmonella Typhimurium results in induction of HIF transcriptional activity that tracks with the clearance of intracellular Salmonella. Work in vivo demonstrates that IEC-specific deletion of HIF compromises xenophagy and exacerbates bacterial dissemination. These results reveal that the interaction between hypoxia, HIF, and xenophagy is an essential innate immune component for the control of intracellular pathogens.


Asunto(s)
Macroautofagia , Infecciones por Salmonella , Humanos , Hipoxia/metabolismo , Mucosa Intestinal/metabolismo , Oxígeno/metabolismo , Infecciones por Salmonella/metabolismo , Factores de Transcripción/metabolismo
8.
Front Immunol ; 13: 840719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693797

RESUMEN

IL-38 is a recently discovered cytokine and member of the IL-1 Family. In the IL-1 Family, IL-38 is unique because the cytokine is primarily a B lymphocyte product and functions to suppress inflammation. Studies in humans with inflammatory bowel disease (IBD) suggest that IL-38 may be protective for ulcerative colitis or Crohn's disease, and that IL-38 acts to maintain homeostasis in the intestinal tract. Here we investigated the role of endogenous IL-38 in experimental colitis in mice deficient in IL-38 by deletion of exons 1-4 in C57 BL/6 mice. Compared to WT mice, IL-38 deficient mice subjected to dextran sulfate sodium (DSS) showed greater severity of disease, more weight loss, increased intestinal permeability, and a worse histological phenotype including increased neutrophil influx in the colon. Mice lacking IL-38 exhibited elevated colonic Nlrp3 mRNA and protein levels, increased caspase-1 activation, and the concomitant increased processing of IL-1ß precursor into active IL-1ß. Expression of IL-1α, an exacerbator of IBD, was also upregulated. Colonic myleloperoxidase protein and Il17a, and Il17f mRNA levels were higher in the IL-38 deficient mice. Daily treatment of IL-38 deficient mice with an NLRP3 inhibitor attenuated diarrhea and weight loss during the recovery phase. These data implicate endogenous IL-38 as an anti-inflammatory cytokine that reduces DSS colitis severity. We propose that a relative deficiency of IL-38 contributes to IBD by disinhibition of the NLRP3 inflammasome.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Interleucina-1/metabolismo , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Citocinas , Sulfato de Dextran , Eliminación de Gen , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Interleucina-1/genética , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Mensajero , Pérdida de Peso
9.
J Leukoc Biol ; 112(6): 1543-1553, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35674095

RESUMEN

Neutrophil (PMN) infiltration during active inflammation imprints changes in the local tissue environment. Such responses are often accompanied by significant extracellular acidosis that result in predictable transcriptional responses. In this study, we explore the mechanisms involved in inflammatory acidification as a result of PMN-intestinal epithelial cell (IEC) interactions. Using recently developed tools, we revealed that PMN transepithelial migration (TEM)-associated inflammatory acidosis is dependent on the total number of PMNs present during TEM and is polarized toward the apical surface. Extending these studies, we demonstrate that physical separation of the PMNs and IECs prevented acidification, whereas inhibition of PMN TEM using neutralizing antibodies enhanced extracellular acidification. Utilizing pharmaceutical inhibitors, we demonstrate that the acidification response is independent of myeloperoxidase and dependent on reactive oxygen species generated during PMN TEM. In conclusion, inflammatory acidosis represents a polarized PMN-IEC-dependent response by an as yet to be fully determined mechanism.


Asunto(s)
Mucosa Intestinal , Neutrófilos , Adhesión Celular , Células Cultivadas , Concentración de Iones de Hidrógeno
10.
Proc Natl Acad Sci U S A ; 119(13): e2117770119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312359

RESUMEN

Spirochetal pathogens, such as the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, encode an abundance of lipoproteins; however, due in part to their evolutionary distance from more well-studied bacteria, such as Proteobacteria and Firmicutes, few spirochetal lipoproteins have assigned functions. Indeed, B. burgdorferi devotes almost 8% of its genome to lipoprotein genes and interacts with its environment primarily through the production of at least 80 surface-exposed lipoproteins throughout its tick vector­vertebrate host lifecycle. Several B. burgdorferi lipoproteins have been shown to serve roles in cellular adherence or immune evasion, but the functions for most B. burgdorferi surface lipoproteins remain unknown. In this study, we developed a B. burgdorferi lipoproteome screening platform utilizing intact spirochetes that enables the identification of previously unrecognized host interactions. As spirochetal survival in the bloodstream is essential for dissemination, we targeted our screen to C1, the first component of the classical (antibody-initiated) complement pathway. We identified two high-affinity C1 interactions by the paralogous lipoproteins, ElpB and ElpQ (also termed ErpB and ErpQ, respectively). Using biochemical, microbiological, and biophysical approaches, we demonstrate that ElpB and ElpQ bind the activated forms of the C1 proteases, C1r and C1s, and represent a distinct mechanistic class of C1 inhibitors that protect the spirochete from antibody-mediated complement killing. In addition to identifying a mode of complement inhibition, our study establishes a lipoproteome screening methodology as a discovery platform for identifying direct host­pathogen interactions that are central to the pathogenesis of spirochetes, such as the Lyme disease agent.


Asunto(s)
Proteínas Bacterianas , Borrelia burgdorferi , Complemento C1q , Evasión Inmune , Lipoproteínas , Enfermedad de Lyme , Proteínas Bacterianas/inmunología , Borrelia burgdorferi/inmunología , Complemento C1q/inmunología , Humanos , Inmunoglobulinas/inmunología , Lipoproteínas/inmunología , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Proteoma/inmunología
11.
Cells ; 11(6)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35326394

RESUMEN

Epithelial cells that line tissues such as the intestine serve as the primary barrier to the outside world. Epithelia provide selective permeability in the presence of a large constellation of microbes, termed the microbiota. Recent studies have revealed that the symbiotic relationship between the healthy host and the microbiota includes the regulation of cell-cell interactions at the level of epithelial tight junctions. The most recent findings have identified multiple microbial-derived metabolites that influence intracellular signaling pathways which elicit activities at the epithelial apical junction complex. Here, we review recent findings that place microbiota-derived metabolites as primary regulators of epithelial cell-cell interactions and ultimately mucosal permeability in health and disease.


Asunto(s)
Mucosa Intestinal , Uniones Estrechas , Comunicación Celular , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Permeabilidad , Uniones Estrechas/metabolismo
12.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34451805

RESUMEN

Inflammatory bowel disease (IBD) is a family of conditions characterized by chronic, relapsing inflammation of the gastrointestinal tract. IBD afflicts over 3 million adults in the United States and shows increasing prevalence in the Westernized world. Current IBD treatments center on modulation of the damaging inflammatory response and carry risks such as immunosuppression, while the development of more effective treatments is hampered by our poor understanding of the molecular mechanisms of IBD pathogenesis. Previous genome-wide association studies (GWAS) have demonstrated that gene variants linked to the cellular response to microorganisms are most strongly associated with an increased risk of IBD. These studies are supported by mechanistic work demonstrating that IBD-associated polymorphisms compromise the intestine's anti-microbial defense. In this review, we summarize the current knowledge regarding IBD as a disease of defects in host-microbe interactions and discuss potential avenues for targeting this mechanism for future therapeutic development.

13.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972436

RESUMEN

Metabolic changes associated with tissue inflammation result in significant extracellular acidosis (EA). Within mucosal tissues, intestinal epithelial cells (IEC) have evolved adaptive strategies to cope with EA through the up-regulation of SLC26A3 to promote pH homeostasis. We hypothesized that EA significantly alters IEC gene expression as an adaptive mechanism to counteract inflammation. Using an unbiased RNA sequencing approach, we defined the impact of EA on IEC gene expression to define molecular mechanisms by which IEC respond to EA. This approach identified a unique gene signature enriched in cyclic AMP response element-binding protein (CREB)-regulated gene targets. Utilizing loss- and gain-of-function approaches in cultured epithelia and murine colonoids, we demonstrate that EA elicits prominent CREB phosphorylation through cyclic AMP-independent mechanisms that requires elements of the mitogen-activated protein kinase signaling pathway. Further analysis revealed that EA signals through the G protein-coupled receptor GPR31 to promote induction of FosB, NR4A1, and DUSP1. These studies were extended to an in vivo murine model in conjunction with colonization of a pH reporter Escherichia coli strain that demonstrated significant mucosal acidification in the TNFΔARE model of murine ileitis. Herein, we observed a strong correlation between the expression of acidosis-associated genes with bacterial reporter sfGFP intensity in the distal ileum. Finally, the expression of this unique EA-associated gene signature was increased during active inflammation in patients with Crohn's disease but not in the patient control samples. These findings establish a mechanism for EA-induced signals during inflammation-associated acidosis in both murine and human ileitis.


Asunto(s)
Acidosis/genética , Antiportadores/genética , Enfermedad de Crohn/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Ileítis/genética , Receptores Acoplados a Proteínas G/genética , Transportadores de Sulfato/genética , Acidosis/metabolismo , Acidosis/patología , Animales , Antiportadores/metabolismo , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Regulación de la Expresión Génica , Humanos , Ileítis/metabolismo , Ileítis/patología , Íleon/metabolismo , Íleon/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Organoides/metabolismo , Organoides/patología , Fosforilación , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Transportadores de Sulfato/metabolismo
14.
FASEB J ; 35(5): e21552, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33826788

RESUMEN

During episodes of acute inflammation, polymorphonuclear leukocytes (PMNs) are actively recruited to sites of inflammation or injury where they provide anti-microbial and wound-healing functions. One enzyme crucial for fulfilling these functions is myeloperoxidase (MPO), which generates hypochlorous acid from Cl- and hydrogen peroxide. The potential exists, however, that uncontrolled the extracellular generation of hypochlorous acid by MPO can cause bystander tissue damage and inhibit the healing response. Previous work suggests that the microbiota-derived tryptophan metabolites 1H-indole and related molecules ("indoles") are protective during intestinal inflammation, although their precise mechanism of action is unclear. In the present work, we serendipitously discovered that indoles are potent and selective inhibitors of MPO. Using both primary human PMNs and recombinant human MPO in a cell-free system, we revealed that indoles inhibit MPO at physiologic concentrations. Particularly, indoles block the chlorinating activity of MPO, a reliable marker for MPO-associated tissue damage, as measured by coulometric-coupled HPLC. Further, we observed direct interaction between indoles and MPO using the established biochemical techniques microscale thermophoresis and STD-NMR. Utilizing a murine colitis model, we demonstrate that indoles inhibit bystander tissue damage, reflected in decreased colon 3-chlorotyrosine and pro-inflammatory chemokine expression in vivo. Taken together, these results identify microbiota-derived indoles that acts as endogenous immunomodulatory compounds through their actions on MPO, suggesting a symbiotic association between the gut microbiota and host innate immune system. Such findings offer exciting new targets for future pharmacological intervention.


Asunto(s)
Adenocarcinoma/patología , Efecto Espectador , Colitis/patología , Neoplasias Colorrectales/patología , Indoles/farmacología , Neutrófilos/enzimología , Peroxidasa/antagonistas & inhibidores , Adenocarcinoma/inmunología , Adenocarcinoma/metabolismo , Animales , Colitis/inmunología , Colitis/metabolismo , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Halogenación , Humanos , Ratones , Ratones Endogámicos C57BL , Microbiota , Células Tumorales Cultivadas , Tirosina/metabolismo
15.
Mol Biol Cell ; 31(20): 2249-2258, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32726170

RESUMEN

Intestinal epithelial cells (IECs) exist in a metabolic state of low oxygen tension termed "physiologic hypoxia." An important factor in maintaining intestinal homeostasis is the transcription factor hypoxia-inducible factor (HIF), which is stabilized under hypoxic conditions and mediates IEC homeostatic responses to low oxygen tension. To identify HIF transcriptional targets in IEC, chromatin immunoprecipitation (ChIP) was performed in Caco-2 IECs using HIF-1α- or HIF-2α-specific antibodies. ChIP-enriched DNA was hybridized to a custom promoter microarray (termed ChIP-chip). This unbiased approach identified autophagy as a major HIF-1-targeted pathway in IEC. Binding of HIF-1 to the ATG9A promoter, the only transmembrane component within the autophagy pathway, was particularly enriched by exposure of IEC to hypoxia. Validation of this ChIP-chip revealed prominent induction of ATG9A, and luciferase promoter assays identified a functional hypoxia response element upstream of the TSS. Hypoxia-mediated induction of ATG9A was lost in cells lacking HIF-1. Strikingly, we found that lentiviral-mediated knockdown (KD) of ATG9A in IECs prevents epithelial barrier formation by >95% and results in significant mislocalization of multiple tight junction (TJ) proteins. Extensions of these findings showed that ATG9A KD cells have intrinsic abnormalities in the actin cytoskeleton, including mislocalization of the TJ binding protein vasodilator-stimulated phosphoprotein. These results implicate ATG9A as essential for multiple steps of epithelial TJ biogenesis and actin cytoskeletal regulation. Our findings have novel applicability for disorders that involve a compromised epithelial barrier and suggest that targeting ATG9A may be a rational strategy for future therapeutic intervention.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de la Membrana/metabolismo , Uniones Estrechas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Células CACO-2 , Hipoxia de la Célula/fisiología , Línea Celular , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de la Membrana/genética , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/genética , Proteínas de Uniones Estrechas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/genética
16.
J Bacteriol ; 199(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28069820

RESUMEN

The Lyme disease spirochete Borrelia burgdorferi is unique among bacteria in its large number of lipoproteins that are encoded by a small, exceptionally fragmented, and predominantly linear genome. Peripherally anchored in either the inner or outer membrane and facing either the periplasm or the external environment, these lipoproteins assume varied roles. A prominent subset of lipoproteins functioning as the apparent linchpins of the enzootic tick-vertebrate infection cycle have been explored as vaccine targets. Yet, most of the B. burgdorferi lipoproteome has remained uncharacterized. Here, we comprehensively and conclusively localize the B. burgdorferi lipoproteome by applying established protein localization assays to a newly generated epitope-tagged lipoprotein expression library and by validating the obtained individual protein localization results using a sensitive global mass spectrometry approach. The derived consensus localization data indicate that 86 of the 125 analyzed lipoproteins encoded by B. burgdorferi are secreted to the bacterial surface. Thirty-one of the remaining 39 periplasmic lipoproteins are retained in the inner membrane, with only 8 lipoproteins being anchored in the periplasmic leaflet of the outer membrane. The localization of 10 lipoproteins was further defined or revised, and 52 surface and 23 periplasmic lipoproteins were newly localized. Cross-referencing prior studies revealed that the borrelial surface lipoproteome contributing to the host-pathogen interface is encoded predominantly by plasmids. Conversely, periplasmic lipoproteins are encoded mainly by chromosomal loci. These studies close a gap in our understanding of the functional lipoproteome of an important human pathogen and set the stage for more in-depth studies of thus-far-neglected spirochetal lipoproteins.IMPORTANCE The small and exceptionally fragmented genome of the Lyme disease spirochete Borrelia burgdorferi encodes over 120 lipoproteins. Studies in the field have predominantly focused on a relatively small number of surface lipoproteins that play important roles in the transmission and pathogenesis of this global human pathogen. Yet, a comprehensive spatial assessment of the entire borrelial lipoproteome has been missing. The current study newly identifies 52 surface and 23 periplasmic lipoproteins. Overall, two-thirds of the B. burgdorferi lipoproteins localize to the surface, while outer membrane lipoproteins facing the periplasm are rare. This analysis underscores the dominant contribution of lipoproteins to the spirochete's rather complex and adaptable host-pathogen interface, and it encourages further functional exploration of its lipoproteome.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Epítopos , Escherichia coli/metabolismo , Biblioteca de Genes , Lipoproteínas/genética , Espectrometría de Masas , Proteínas de la Membrana/genética , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...